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Preleukemic and leukemic evolution at the stem cell level
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Hematological malignancies are an aggregate of diverse populations of cells that arise following a complex process of
clonal evolution and selection. Recent approaches have facilitated the study of clonal populations and their evolution
over time across multiple phenotypic cell populations. In this review, we present current concepts on the role of clonal
evolution in leukemic initiation, disease progression, and relapse. We highlight recent advances and unanswered
questions about the contribution of the hematopoietic stem cell population to these processes. (Blood. 2021;137(8):
1013-1018)

Introduction
Leukemias, like many tumors, contain diverse populations of
cellular clones. This tumor heterogeneity is further shaped by
clonal evolution, a process by which accumulated aberrations,
both genetic and nongenetic, generate diversity that is subject
to selective pressures. The clonal makeup changes during dis-
ease pathogenesis, whether it be initial malignant transformation,
disease progression, or relapse. Historically, clonal evolution has
been thought of as a primarily linear process in which a series of
subsequent mutations give rise to novel subclones that drive
disease progression.1 Recently, many lines of evidence point to a
highly dynamic process of clonal evolution in leukemia that
originates long before diagnosis, including at the stem cell level,
and a clonal landscape that is continuously reshaped in response
to changing selective pressures. Having a greater understanding
of clonal evolution and its origins is of particular importance in
myelodysplastic syndromes (MDSs) and acute myeloid leukemia
(AML), where poor clinical outcomes are common, in large part
because of high rates of progression and relapse even after
complete remission.2-4 This review provides an overview of
emerging concepts of clonal evolution, specifically in the context
of myeloid malignancies and highlights recent work proposing
premalignant stem cells as a clinically relevant source of clonal
heterogeneity.

Clonal evolution in leukemic initiation
Over time, competition between hematopoietic stem cells (HSCs)
drives clonal diversification of the hematopoietic system. In some
cases, a series of transforming events give rise to preleukemic
stem cells (pre-LSCs), which precedes the transformation of leu-
kemia stem cells (LSCs) from which the tumor bulk is derived.5,6

Early evidence for this concept was found in murine models of
preleukemic-to-overt leukemia transition,7-9 followed by the dis-
covery of transcriptional and other epigenetic changes in phe-
notypically “normal” stem cells from patients8,10-13 and, later,
genomic identification of pre-LSCs in patients with AML6,14,15

and MDS.16

Myeloid malignancies are often preceded by a premalignant
state in which accumulated cellular alterations can exist years
prior to the development of symptoms. In some cases, the earliest
events arise as germlinemutations, as seen in familial leukemias.17

Often, somatic mutations resulting in clonal hematopoiesis (CH)
can precede transformation.18-23 Although most cases of CH do
not progress to malignancy, recent studies directly linking CH
mutations toAML suggest that AML can be descended from long-
lived premalignant CH clones and provides additional evidence
supporting the stem cell origin of leukemias.23-25

The effects of clonal selection during initiation can be exem-
plified by therapy-related MDS and AML. Patients who have
undergone previous chemotherapy for unrelated malignancies
demonstrate a higher rate of CH, especially in genes related to
DNA damage response, such as TP53 and PPM1D.26,27 These
mutations suggest that genotoxic stress caused by therapy can
lead to the expansion of DNA damage-resistant clones. This is
further supported by the enrichment of thesemutations in therapy-
relatedMDS and AML compared with de novoMDS/AML, without
an increase in the absolute number of mutations.28,29

Collectively, these findings, combined with the longevity and
long-term self-renewal capacity of stem cells,30,31 suggest that
the HSC population naturally diversifies over time. Continued
accumulation of aberrations leads to the transformation of pre-
LSCs and the appearance of a clinically detectable tumor bulk, or
blast cells. Although themajority of blast cells usually belong to a
limited number of dominant clones, the processes of evolution,
competition, and selection during premalignancy and trans-
formation result in a complex and heterogeneous clonal archi-
tecture, often including numerous minor subclones. This concept
has been reflected in analysis of the clonal makeup of MDS and
AML bulk cell populations by single-cell or deep next-generation
sequencing, revealing diverse clones with patterns of linear and
branching evolution.32-40

Althoughmutations provide an easy way to track clones and their
evolution, nongenetic factors also play an important role in
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clonal selection and disease initiation.41-44 For example, tran-
scriptional and other RNA regulatory changes appear to be
key events in leukemic transformation, with genetic mutations
being only a part of that dysregulation.18,45-51 Additionally, cell-
extrinsic mediators can affect how HSCs respond to cell-intrinsic
aberrations.52-55 These effectors can include extrinsic selective
pressures, such as chemotherapy, as well as a chronic in-
flammatory milieu and decreased supportive function of an
aging bone marrow niche.56,57 A deteriorating hematopoietic
microenvironment may promote the preferential expansion of
certain mutated clones that would have had no advantage in an
unperturbed system. To that end, it is unclear whether CH is
necessarily a pathological step on the path to leukemogenesis
or simply a result of natural clonal diversification in response to a
changing environment. This idea is also supported by the
persistence of some common CH mutations after complete
remission without an increased risk for relapse.58

Clonal evolution in progression
and relapse
Clonal evolution continues as part of the natural history of the
disease, but the evolutionary patterns and role of the stem cell
compartment become more difficult to track at disease stages
when a large dominant bulk population is present. Cytotoxic and
targeted treatments can impose major selective pressures,
overpowering cell-intrinsic advantages to direct clonal evolu-
tion. Paired MDS and AML sequencing studies have generally
shown persistence of the dominant mutations and karyotype in
progressive disease, often with the emergence of a newly de-
tected subclone.32-36 For example, treatment with lenalidomide
showed successful suppression of the del(5q) clone in MDS;
however, in most cases treatment was associated with selection
and expansion of a preexisting minor subclone.32,33 This sug-
gests that relapse following treatment may often be a result of
clonal selection of an existing clone and not induced muta-
genesis. Although, in many cases, the dominant clone after
treatment containedmost or all mutations found in the dominant
clone at diagnosis, in some cases a distinct mutational profile
with few common mutations was detected, indicating early di-
vergence from the dominant lineage at diagnosis.34,36 Con-
ceptually similar phenomena have also been observed in
myeloproliferative neoplasms.59-62

In AML, early studies of paired diagnosis-relapse samples dem-
onstrated that most cases of AML with chromosomal abnormalities
remained cytogenetically stable, sometimes acquiring addi-
tional chromosomal abnormalities.63 However, there were some
cases in which relapse clones were cytogenetically distinct.
Genomic analysis of paired samples further established that
AML relapse can be due to evolution, often linear, of the
dominant disease clone. In other cases, AML relapse originated
from a related, but distinct, clone.15,37 In either of these cases,
the relapse clones have sometimes been detectable in primary
disease as a minor clone.38,64,65

These studies and others suggest that preexisting minor clones
may be critical to disease progression, whether they are directly
derived from the dominant clone or not. Even in cases in which
the minor clones are not detected, they may be present.
Classical methodologies of investigating the tumor bulk make it

difficult to distinguish whether a newly detected clone at pro-
gression is an expansion of an existing leukemic clone below
detection limits in primary disease or genuinely due to muta-
tional acquisition since prior sampling. Distinguishing between
these important, but not necessarily mutually exclusive, possi-
bilities will have obvious implications for strategies of targeted
diagnostics and precision therapeutics to achieve lasting disease
control or even prevention of relapse and progression.

The stem compartment in progression
and relapse
The stem cell compartment plays an important role in the
pathogenesis of myeloid malignancies, not only as the source
of the cancer, but also because LSCs and pre-LSCs persist
throughout the course of the disease. LSC burden has been
shown to be an excellent predictor of clinical outcomes in AML,66

and LSCs are thought to cause relapsewhen not fully eradicated.67,68

HSCs are also subject to various cell-extrinsic selective pressures,
such as niche effects, inflammation, and immunological control,
which can codrive clonal evolution.42,54,69-72 However, their role
during disease progression, including in the context of therapeutic
interventions, has not been fully appreciated until recently.

The origin of a clone can be traced back by using specific so-
matically acquired genetic variants as lineage-tracing markers.
Cell populations that share the same variants can be assumed to
originate from the same founding cell, irrespective of whether
the specific variant is assumed to confer altered functionality.73

To determine the origin of secondary disease, Shlush et al,74

Chen et al,16 and Quek et al75 applied this approach to directly
investigate the role of stem cell populations in AML relapse,
MDS to secondary AML (sAML) progression, and targeted
therapy of AML, respectively.

Shlush et al determined the mutational profile of bulk AML
samples at diagnosis and relapse in 11 patients, as well as se-
quencing nonleukemic T cells to distinguish between leukemic
and preleukemic mutations. Most patients had a large number of
unique relapse variants not detected in the diagnosis sample,
consistent with a clonal switch at relapse. To characterize the
genetic diversity of the stem cell population, they performed
xenotransplantation of the diagnosis sample and assayed the
resultant xenografts for the presence of relapse variants. In
addition, sorted progenitor populations from the primary sample
were assayed when available. Variant allele frequencies were
then used to infer the clonal evolution from diagnosis to relapse.
This analysis demonstrated that most relapse variants were al-
ready present at the time of diagnosis to varying degrees,
suggesting that chemotherapy-induced mutations were not the
cause of relapse; instead, the stem cells destined to give rise to
relapse clones were preexisting and resistant to therapy. In-
terestingly, relapse variants were never detected in primary
T-cell populations or in lymphoid xenograft populations, sug-
gesting LSCs as the most primitive probable source of these
clones, and not pre-LSCs, in relapsed AML. Shlush et al iden-
tified 2 major patterns of LSC source populations responsible for
relapse: relapse origin‐primitive and relapse origin‐committed.
In the relapse origin‐primitive group, mutations found only in the
relapse blasts, but not in the diagnosis blasts, were detectable in
early progenitors, as well as in the diagnosis xenografts. In these
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patients, the LSCs responsible for relapse are exceedingly rare at
diagnosis and seemingly do not contribute to the blasts at that
time. However, they are apparently resistant to standard treat-
ment and instead are positively selected and reinitiate the
leukemia during relapse. In the relapse origin‐committed group,
the relapse clones are more closely related to the major di-
agnosis clone present and originate from more committed
progenitors; however, they still possess a strong stemness
signature.

In their study of MDS progression, Chen et al assayed longi-
tudinal paired samples from 7 patients with high-risk MDS who
had progressed to sAML to interrogate the clonal architecture of
the stem and blast populations. Phenotypically defined and
functionally validated pre–MDS-stem cells (pre–MDS-SCs), MDS-
SCs, pre-LSCs, LSCs, and blast populations were sorted from
bonemarrow samples at both time points. Themutational profiles
of these samples were determined by targeted deep sequencing,
followed by single-cell validation. The stem populations showed
greater mutational diversity and an increased number of muta-
tional clusters (ie, clones) than did the blast population. This
further demonstrates that the stem population harbors increased
heterogeneity that is not appreciated in mature populations.

By tracking the variant allele frequencies in each population,
Chen et al were able to infer the clonal evolution that occurs
during MDS to sAML progression. Most patients (6/7) showed a
demonstrable clonal shift in the blast populations upon pro-
gression. However, all patients showed persistence of $1 dom-
inant clone after transition, indicating that the bulk of sAML cells
likely originated from the same founding population, consistent
with previous results. In 4 patients, mutations in a dominant clone
that seemed to newly emerge in the AML blasts (ie, was not
detectable in the MDS blasts) were detectable in the MDS-SC or
pre–MDS-SC population at the MDS time point. In 1 of these
cases, the clone was highly represented (49%-52% clonal prev-
alence) in the MDS stem populations, pointing to possibly
complex differential competition and selection mechanisms of
stem cell subclones at the MDS and sAML disease stages, re-
spectively, that may not be predicted based on clone size alone.
Similar results, of seemingly new sAMLmutations being detected
in the stem cell compartment at theMDS stage, were reported by
Simonsen et al76 in 2 of 3 paired MDS-sAML samples assayed.

In their study, Quek et al detailed the clonal basis of response
and acquired resistance to enasidenib. In patients with IDH2-
mutant AML, treatment with enasidenib produces a clinical re-
sponse by promoting differentiation of arrested leukemic cells.
By sorting multiple stem and progenitor populations of longi-
tudinal samples, Quek et al tracked clonal changes across dif-
ferent cell populations and in response to treatment. In some
cases, the clonal compositions differed across cell populations,
especially when comparing more committed cells to early stem
and progenitor cells. In most responding patients, the terminally
differentiated mature cells arose from the dominant AML clone,
retaining the same mutational profile. In other cases, treatment
induced differentiation and selection of ancestral or seemingly
unmutated clones. Relapse and reimposition of the differenti-
ation block were found to be a result of clonal evolution or
selection. In 1 patient with 2 divergent dominant clones (both
IDH2 mutant) present at diagnosis, treatment induced a re-
sponse in only 1 of the clones. At relapse, the nonresponding

clone shrunk in most populations and was only found with high
prevalence in lymphoid-primed multipotent progenitors. How-
ever, accumulation of additional mutations in the persistent
nonresponding clone led to selection of that clone and relapse.
These findings highlight the complexities of clonal evolution that
can take place during AML disease course and targeted therapy
and show the importance of studying stem and progenitor
populations directly in the clinical context.

These findings point to a model in which some clones diverge
from the dominant leukemic lineage very early in disease
pathogenesis and including at the level of premalignant stem
cell subclones. These coexisting stem cell clones continue to
evolve in parallel with the clinically apparent dominant clone and
have the capacity to be selected for at a later point (Figure 1).

Conclusions
With the current ease ofDNA sequencing and the implementation
of newer methods with increasingly higher cellular resolution,
it has become clear that clonal heterogeneity is present in all
hematological malignancies,77-80 including at the stem cell
level.16,61,62,74,75 The clonal architecture found in the tumor bulk is a
result of the continuous accumulation and selection of genetic and
nongenetic variants, first in HSCs and later in the cancer cells
themselves. These recent findings highlight the stem cell com-
partment as an additional space where clinically relevant clonal
evolution is occurring during the disease process.

The evolutionary pattern observed in a given case after treat-
ment likely depends on the treatment’s efficacy. If the dominant
clone persists after treatment, the secondary clone will probably
show a linear evolutionary pattern with greater genetic similarity
to the primary clone. New targeted therapies, such as IDH and
FLT3 inhibitors, or other emerging therapies resulting in broader
and deeper responses, such as venetoclax plus azacitidine, will
likely be more successful in ablating the initial dominant clone
and may result in relapse clones that are more divergent. Ulti-
mately, treatments that target the tumor evolutionary process
will likely need to be considered to achieve more effective and
lasting disease control. Such approaches could include treat-
ments directly targeting phenotypic pre-LSCs70 or specific vul-
nerabilities of clones carrying CH mutations81 or treatments
affecting mutational acquisition and subclonal diversification.82-84

The targeting of the inflammatory environment that drives se-
lection is also emerging as an interesting new avenue.54,85-90

Furthermore, the direct targeting of transcriptional regulators,
previously deemed “undruggable,” is becoming increasingly
feasible through chemical and biophysical advances and the
design andoptimization of novel therapeutic substance classes,82,91-94

some of which have recently advanced to the clinic. Lastly, the ability
to detect relevant minor subclones and understand what drives the
expansion of a seemingly inactive pre-LSC clone may lead to
additional anticipation-based treatment strategies.

However, there is much left unknown, especially at the stem cell
level. The degree of heterogeneity is almost certainly still under-
estimated as a result of technical limitations. There are likely
hundreds, and possibly more, stem cell subclones that exist and
contribute to the fitness of the HSC pool, and it may be difficult
to determine which are clinically relevant. Deep-sequencing or
single-cell analysis of multiple longitudinal stem cell and blast

LEUKEMIC EVOLUTION AT THE STEM CELL LEVEL blood® 25 FEBRUARY 2021 | VOLUME 137, NUMBER 8 1015

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/137/8/1013/1800886/bloodbld2019004397c.pdf by guest on 21 N

ovem
ber 2022



samples collected during disease course and treatment could
help to determine the variants that contribute to cellular fitness
and subsequent expansion and in relation to the specific treat-
ment context. Because of the observed long-lived presence of
minor stem cell subclones that do not obtain dominance, de-
spite well-known genetic driver mutations, the mechanisms are
unlikely to be solely genetic and may include cell-extrinsic
mechanisms. Therefore, comprehensive functional studies, with
human (pre)cancer stem cells, but also newly emerging polyclonal
(and nonlinear) models of leukemia pathogenesis (eg, in the
mouse, zebrafish, or others), are warranted to better understand
the factors governing fitness of the heterogeneous stem cell
pool and, ultimately, how it can be influenced pharmacologi-
cally, including in a preemptive manner.
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