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Nongenetic heterogeneity, or gene expression stochastic-
ity, is an important source of variability in biological sys-
tems. With the advent and improvement of single
molecule resolution technologies, it has been shown that
transcription dynamics and resultant transcript number
fluctuations generate significant cell-to-cell variability that
has important biological effects and may contribute sub-
stantially to both tissue homeostasis and disease. In this
respect, the pathophysiology of stem cell-derived

malignancies such as acute myeloid leukemia and myelo-
dysplastic syndromes, which has historically been studied
at the ensemble level, may require reevaluation. To that
end, it is our aim in this review to highlight the results of
recent single-molecule, biophysical, and systems studies
of gene expression dynamics, with the explicit purpose
of demonstrating how the insights from these basic science
studies may help inform and progress the field of leukemia
biology and, ultimately, research into novel therapies.

Introduction
Cellular identity is encoded by the repertoire of genes expressed
and repressed by a cell. These baseline patterns of gene expres-
sion, as well as the functional modules executed by the cell, are
organized in networks. The performance of all transcription net-
works is contingent on the selective participation of the genome
in a spatiotemporally coherent manner. In that regard, transcrip-
tion factors (TF) are essential players in the maintenance of cellular
identity through the specific and regulated licensing of loci in the
genome. Although developing a quantitative understanding of TF
dynamics and their impact on transcriptional networks is an area of
obvious interest to developmental biology, aberrant networks are
also a defining and ubiquitous feature of oncogenesis. In particu-
lar, dysregulation of normal differentiation networks and mainte-
nance of a progenitor-like state seems to be prevalent in acute
leukemogenesis.1-9 Indeed, as the high degree of genetic hetero-
geneity found both within and between patients with myelodys-
plastic syndromes and acute leukemias continues to be
appreciated,10-13 deregulation of essential hematopoietic TF
such as CEBPA, RUNX1, MEIS1, HOXA9, GATA2, and PU.1,
may be the unifying pathological hallmark of these notoriously
recalcitrant tumors rather than any particular genetic event.14-22

Elucidating the operational rules of normal hematopoietic differ-
entiation networks will therefore affect our understanding of tumor
pathogenesis and may inform novel therapeutic strategies.

Over the past few decades, technological developments have
facilitated the study of gene expression at increasingly finer reso-
lution. The forefront of these techniques has enabled the investi-
gation of single cell behaviors, and at times even the study of
single messenger RNA (mRNA) and protein molecules in living
cells. When combined with powerful computational tools,
machine learning algorithms, and theoretical insights from
systems biology, these studies have provided an

unprecedented and rapidly evolving understanding of life
within the cell. This insight has, in many cases, demon-
strated substantial intrinsic heterogeneity, or stochasticity,
in the behavior of genetically identical cells in homoge-
neous conditions. Although these results are largely congru-
ent with predictions made many decades ago by theoretical
biologists and physicists,23-25 how to reconcile the compli-
cated, even counterintuitive, picture emerging of life at
the single-cell level with our notion of robust steady-state
hematopoiesis is a challenge. Similarly, these studies pre-
sent a major hurdle for the field in understanding the path-
ogenesis and the therapeutic targeting of malignancies
such as myelodysplastic syndromes (MDS) and acute mye-
loid leukemia (AML).

In this review, we will highlight the results of recent in situ, single-
molecule, biophysical, and systems studies of transcription
dynamics. The goal is to demonstrate how the results of these
studies may require a reformatting of our understanding of leuke-
mogenesis, particularly at the single-cell level. Indeed, as the
oncogenicity imputed to TF “misexpression” is based on the pre-
mise that TF regulate their target genes in a concentration-
dependent fashion, a quantitative model of TF expression and
subsequent gene regulation is needed to ultimately understand
AML pathogenesis.

Deregulation of transcription factors
in AML
The complex cascade of reactions involved in “gene expression”
offers multiple avenues by which TF levels and/or activity may be
manipulated (Figure 1). Before delving into the major findings
from single-cell gene expression studies, we will present a
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nonexhaustive survey of how hematopoietic transcription factors
are known to be deregulated in AML.

Transcriptional deregulation
The classic example of transcriptional deregulation of TF comes
from one of the earliest identified AML oncogenes, the onco-
fusion protein PML-RARa. In a series of seminal studies, it was
determined that this fusion gene, the putative driver of acute pro-
myelocytic leukemia, was actually the fusion of 2 TFs. As such, its
pathogenicity is presumptively derived from its ability to deregu-
late the transcription network of the promyelocyte genome.3,26,27

More recently, the oncogenicity of another well-studied class of
onco-fusion proteins, theMLL rearrangements, was demonstrated
to be due to the mislocalization of the activating histone methyl-
transferase DOT1L, leading to increased RNA polymerase proces-
sivity genome wide and the overexpression of genes typically
silenced during terminal myelopoiesis.28-34 In particular, MLL-
AF9–mediated leukemogenesis in mouse models is thought to
be dependent on the ability of this fusion to drive the aberrant
expression of the HOX-related TF genes,Meis1 and Hoxa9, lead-
ing to a more primitive, blast-like state known as a leukemic gran-
ulocyte macrophage progenitor.35 It was also demonstrated that

retroviral overexpression of these TF alone is sufficient to trans-
form normal human hematopoietic stem and progenitor cells
(HSPCs).36 Within human patient samples, one of themost striking
examples of TF transcriptional deregulation is the aberrant expres-
sion of the EVI1 oncogene in inv(3) AML. This inversion event,
which has 1 of the worst prognoses of all recurrent AML genetic
events,37 reorients the highly active GATA2 enhancer toward
the stem cell TF EVI1, leading to significant misexpression of the
latter TF.6,9 EVI1 overexpression subsequently leads to installation
and enforcement of a stem cell transcriptional network by physi-
cally antagonizing the transactivation of lineage specifying TF
such as PU.1, GATA1, and RUNX1. Furthermore, the subsequent
downregulation of GATA2 potentiates the EVI1 phenotype in
human AML cells,9 a finding consistent with studies showing
that haploinsufficiency of Gata2 accelerates Evi-1 driven AML
pathogenesis in mice.38

Direct transcriptional repression of TF is also a hallmark of many
AML etiologies. For instance, the onco-fusion RUNX1-ETO, gen-
erated by the t(8;21) translocation, is thought to induce leukemia
in part by the repression of CEBPA transcription and PU.1-depen-
dent transcriptional activation,39 leading to a block in terminal
granulocyte differentiation.40 RUNX1-ETO has also been shown
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Figure 1. Gene expression as a multilevel reaction cascade. Schematic of the complex reaction cascade of gene expression. Deregulation of TF levels or activity can
putatively occur along any step in the pathway, from synthesis steps such as transcription (mTranscription) and translation (mTranslation), to degradation steps such as the decay
of mRNA (dmrna) and protein (dprotein), to dynamic processes such as posttranslational modifications by ligand activated pathways (KPTM), to shuttling dynamics (KShuttle), and
finally to target locus search and binding (KTF-Target).
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to directly repress the expression of the tumor suppressor TF,
p14(ARF).41 Another powerful example of how direct transcription
deregulation of TF can precipitate AML includes the myriad of
ways in which the master regulatory myeloid TF PU.1 is affected
during leukemogenesis. This deregulation occurs at both the level
of changing PU.1 concentration, as well as through direct uncou-
pling of the PU.1 gene regulatory function at transcriptional tar-
gets (Figure 2A). One example of the former is the murine
model of spontaneous AML generated by loss of the 214 kb
upstream regulatory element of the Spi1 (PU.1) gene.8,42 Loss of
this upstream regulatory element leads to a roughly 80% reduc-
tion in the mRNA and protein level of PU.1 in hematopoietic
stem cell andmyeloid progenitors, ultimately precipitating a fulmi-
nant AML with virtually 100% penetrance. Moreover, heterozy-
gous loss of this enhancer on a mutagenic, mismatch repair-
deficient background also generates MDS and progression to
AML in �70% of mice.43 This finding is paralleled in human
MDS and AML pathogenesis, with roughly 50% to 70% of tumors
downregulating this key TF via a variety of mechanisms, including
mutation of upstream regulators such as GFI1b and RUNX1,
NPM1c mutations that inhibit PU.1 shuttling into the nucleus, or
through sequestration and physical blocking of PU.1 protein by
oncoproteins such as RUNX1-ETO.44-51 Additionally, it appears
that mutations in the cohesin complex, particularly Stag2, limits
PU.1 ability to access and activate genes required for terminal dif-
ferentiation.52 Finally, PU.1 heterozygous mutations are found in a
subset of MLL rearranged leukemias, with subsequent downregu-
lation of PU.1 target genes46 (Figure 2B).

Posttranscriptional deregulation
Although typically studied at the level of transcription, posttran-
scriptional deregulation is also known to occur in AML. This has
been best described for the master granulocyte TF, CEBPA.
CEBPA is translated as 2 major polypeptides, p30 and p42, where
p30 can inhibit p42-mediated gene activation by competing for
binding sites in the genome.53 Importantly, the selection of iso-
form expression is sensitive to eIF2 and eIF4e levels and conse-
quently, mTOR signaling. Intriguingly, although frameshift
mutations in CEBPA leading to exclusive p30 isoform expression
have been described in �9% to 10% of AML cases, mTOR path-
way perturbation has been demonstrated to be a hallmark feature
seen in essentially all patients with AML.54-56

Beyond the level of a single TF, changes in global rate parameters
of posttranscriptional reactions are also known to occur during leu-
kemogenesis. One active area of research is focused on under-
standing how the variety of mutations in splicing factors57,58

frequently seen in both AML and MDS lead to pathology. These
mutations, including in SRSF1 and U2AF1, are known to change
pre-mRNA processing and alternative exon selection across
many genes in the genome.57,58 Similarly, mutations in ribosomal
genes can lead to a spectrum of ribosomopathies, with some such
as dyskeratosis congenita, Shwachman-Diamond syndrome, and
5q syndrome (owing to consequent haploinsufficiency of the
RPS14 gene) having an increased propensity for leukemia.59 Fur-
thermore, mutations in ribosomal subunits have been described
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Figure 2. Multiple pathways of TF deregulation in AML and MDS. (A) TFs modify the output of target genes by influencing the reaction propensities of various steps in
transcription in a manner proportional to some function of TF concentration. These functions can take on a variety of shapes, depending on the number of binding sites and
the higher order complexes that a given TF is involved in at a target locus. Cooperativity at a locus produces gene regulatory functions (GRF) that are sigmoidal in shape.
Although not mutually exclusive phenomena, in a simplistic sense deregulation can occur either through reducing the amount of TF produced or by changing the GRF
shape through changing the degree of cooperativity. In the case of gene activation, this causes different effects at the level of single cells. In the former case (left), lower
TF concentrations lead to less transcription of a target at the single-cell level. In the latter case (right), the amount of TF needed to sufficiently activate a target is increased,
thereby reducing the number of cells which achieve the “threshold” concentration of TF. (B) Specific etiologies whereby the master myeloid TF PU.1 is deregulated in AML
and MDS. Citations found within the main text. DBD, DNA-binding domain; PEST, Pro-Glu-Ser-Thr rich domain; TAD, transactivation domain.
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across various cancer subtypes.60 Finally, deregulation of mRNAs
posttranscriptionally by either base editing or through the altered
expression of RNA binding proteins has been recently recognized
as having a critical impact on gene expression61-67 (this emerging
field in leukemia research is addressed in a companion review).
Although systems-level analyses will be required to fully under-
stand how these aberrations promote leukemogenesis, given
the typically short mRNA and protein half-lives of TF genes,68 it
is anticipated that posttranscriptional deregulation will have an
enormous impact on the concentration and stoichiometry of these
factors.

Finally, 1 important mechanism for TF deregulation in leukemo-
genesis is through changes in the cellular distribution of TF mole-
cules. For instance, NPM1 mutations, which occur in �35% of
primary AML patients,69 are thought to confer pathogenicity
through the cytoplasmic sequestration of myeloid regulatory fac-
tors, including PU.1.70 Our group recently described a role for the
overexpression of MDMX in human AML, which subsequently
leads to p53 sequestration.71 Additionally, the signaling pathways
frequently found to be deregulated in leukemia communicate
their aberrant signals through nuclear translocation of responsive
TF such as ERK and STAT proteins (see previous work72 for a com-
prehensive review of this topic). Finally, 1 well-known mechanism
of leukemogenesis, particularly in core-binding factor mutant
AML, is the direct antagonism of lineage specifying TF,39,40,73

thereby leading to an uncoupling of TF levels and target gene
responses.

Quite clearly, a number of distinct mechanisms have been
described for how leukemia-initiating events generate andmaintain
a leukemic state. Although the exact details may vary, a hallmark
seen in essentially every cytogenetic or mutational subgroup is
the deregulation of TF behavior and/or expression. In that sense,
TF deregulation may represent a unifying principle of leukemogen-
esis. As highly powerful analytical techniques and technologies with
molecular resolution begin to be used in the study of leukemia, our
understanding of how this process plays out at the molecular level
in single cells is going to be a reality in the coming years. In the next
section, we provide an overview of some of the basic findings
derived from these types of technologies and what their impact
may be on the future of leukemia research.

Gene expression at the molecular level
Although the studies listed have been foundational to our under-
standing of leukemogenesis, ensemble assays of gene expression
inherently blur nongenetic variability between cells. This can be
problematic when studying the pathogenesis of clonal diseases
such as AML and MDS that arise from subpopulations of
HSPCs,10,11 particularly given the lack of fully specific and sensitive
markers to define leukemic stem cells. For one, the signal from the
pathogenic process in question is diluted by signal from normal
HSPCs. Arguably more important, however, is that even for iden-
tical cells in identical conditions, heterogeneity is a natural and
unavoidable consequence of gene expression that has been
documented at every level of the evolutionary tree.74-81 This het-
erogeneity, or stochasticity, derives from the physical nature of
gene expression: the reactions constituting “gene expression”
are a series of punctuated steps involving low copy numbers of
reactants, in poorly mixed, partitioned reaction chambers within
the cell. Moreover, capturing this variability is not simply an

academic exercise. Indeed, this stochasticity provides critical infor-
mation about the dynamics and potential regulatory systems of
the process under study.82,83 As such, quantitatively studying
gene-expression stochasticity, particularly in context of TF dynam-
ics, is an essential “next step” in the field’s investigation of leuke-
mia pathogenesis and treatment. To that end, in the following
sections we focus on how molecular randomness and biophysical
forces influence the behavior of TF in the cell.

Transcriptional bursting
As the initial step in gene expression, the reaction kinetics of tran-
scription have been a focus of intense investigation. The advent of
in situ single-molecule imaging tools has provided the necessary
resolution for the quantitative analysis of those kinetics. The first
of these tools was single-molecule mRNA fluorescence in situ
hybridization (smRNA-FISH), developed by Femino and col-
leagues in Rob Singer’s group in 1998.84 This transformative tech-
nology allows for the detection of individual molecules of mRNA
whilemaintaining spatial information within the cell. This key prop-
erty of smRNA-FISH enables one to not only accurately capture
the probability distribution of a gene across a cell population,
but also to facilitate direct observation of nascent transcription.
When combined with computational modeling approaches, this
has allowed for the inference of the underlying transcriptional
rate parameters of a gene. The first of these efforts was performed
in a seminal study by Arjun Raj and colleagues, who studied the
transcriptional kinetics of a tetracycline inducible minigene using
smRNA-FISH and a theoretical framework known as the random
telegraph model.85,86 This work provided the first inference of
key rate constants of an endogenous gene, including the rate of
gene activation, gene inactivation, and polymerase initiation rates.
Similar approaches have been subsequently used to study the
transcription of genes from a diverse repertoire of species and sit-
uations, including bacteria,87 yeast,78 Drosophila,88 and mamma-
lian cells,89-92 including recently in primary HSPCs from mice.93

Irrespective of the system studied, the common feature found is
that transcription is a discontinuous (ie, bursting, phenomenon),
whereby individual loci undergo cycling between intervals of pro-
ductive transcription followed by longer periods of inactivity (Fig-
ure 3A). For instance, we have recently found that although the
majority of primary HSPCs express the key TF PU.1, Gata1, and
Gata2 genes at the mRNA level, active transcription is surprisingly
rare, with only 10% to 20% of cells expressing at any given
moment.93 Even in unipotent populations of cells typified by
high levels of either Gata TF or PU.1 (ie, megakaryocyte-
erythroid progenitor and granulocyte macrophage progenitor
cells), these frequencies only increased to �40% and 20%, res-
pectively. For low-copy-number bursts or mRNAs with shorter
half-lives, features typical of many TF mRNAs,93,94 these temporal
fluctuations in transcriptional activity can lead to markedly dis-
persed single-cell mRNA probability distributions.91,95 Further-
more, these observations with smRNA-FISH have been validated
with live cell imaging studies of nascent transcription using the
MS2 mRNA tagging system.96 In this technique, an array of
stem loop sequences derived from the MS2 bacteriophage RNA
genome are incorporated into the 39 untranslated region of a
gene of interest. By coexpressing a fluorescently taggedMS2 viral
coat protein, which binds these stem loops, in the cell, single
puncta corresponding to single mRNA are readily visualized.
Using this approach, live cell dynamics of transcriptional bursting
can be directly measured.97 Consistent with the data derived
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from smRNA-FISH, MS2-tagged endogenous alleles undergo
cyclic bursting interspersed between long “OFF” periods in
gene activity.71,97-105 For instance, a recent landmark paper
from Dan Larson’s group demonstrated that bursts in the expres-
sion of the estrogen response gene TFF1 can be separated by
inactivate periods lasting on the order of days, even after induc-
tion with estradiol.103

Finally, these bursting behaviors are not restricted to mRNAs.
Indeed, live cell imaging of translation has indicated that these

reactions also occur in discrete bursts. In a series of seminal, con-
current papers, 4 groups demonstrated that translation of an
mRNA is also an infrequent event, with the majority of mRNAs
not translating at any given moment.106-109 For instance, it was
demonstrated that for the Actb gene in murine neurons, only
10% to 30% of mRNAs were translating at any given moment in
the cell. Furthermore, once an mRNA was engaged by the poly-
some, roughly 4.5 nascent peptides were produced before trans-
lation termination.110 Although these techniques are still relatively
new and require further study, when taken together with results at
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the transcriptional level, there is a clear demonstration that burst-
ing phenomena are intrinsic properties of multiple levels of the
central dogma, effectively guaranteeing nongenetic, population
heterogeneity in the level of any biochemical species of interest
in the cell (Figure 3B).

Subcellular TF dynamics
Although it is evident that the intracellular concentration of a TF
influences transcriptional networks, live cell protein imaging has
demonstrated significant complexities in the processes of TF
localization, target search, and locus binding. These dynamic pro-
cesses impact target gene expression and transcriptional networks
in ways that are only just now starting to be appreciated. Never-
theless, there is growing evidence that the spatiotemporal behav-
ior of TF proteins is an important component of gene regulation
and an additional layer of nongenetic heterogeneity in single cells.

TF shuttling between the nucleus and cytoplasm is currently the
best studied dynamic behavior. In both yeast and mammalian
cells, it appears that the rate and amplitude of these subcellular
translocations impart meaningful information to the transcriptome
not accounted for by concentration alone.111,112 For instance, dif-
ferences in shuttling rates of stress TF in yeast can lead to differen-
tial output of coregulated genes,113 and differential p53
responses to g-irradiation and ultraviolet genotoxic stress are
encoded by differences in shuttling behaviors rather than changes
p53 concentration.114-116 Similar shuttling behaviors have also
been described for NF-kB,117 ERK2,118,119 and SMAD4.120 These
studies and others demonstrate mechanistically that subcellular
protein dynamics may provide critical information to the transcrip-
tome that is independent of the TF concentration at a given
moment. Of note, similar effects have recently been reported to
be a key step in the oncogenesis of NPM1c mutations, with
changes in the shuttling capacity of the master transcription factor
PU.1.70 As such, this relatively unexplored area of gene deregula-
tion may have important roles in AML pathogenesis.

Another area of TF biologymarkedly advanced by single-molecule
resolution imaging studies is our understanding of how TF find
and bind to target genes. Indeed, the facilitated diffusion models
derived from bacterial studies,121 where TF passively explore
3-dimensional space followed by constrained 1-dimensional slid-
ing on DNA, physically cannot work in eukaryotes given the enor-
mity of the genome as well as the chromatin-derived energy
barriers to sliding.122 In recent years, the application of single pro-
tein imaging in live cells has facilitated direct observation of TF
search paths through the mammalian nucleus. The results have
been striking and at times counterintuitive. For instance, although
the general transcriptional amplifierMYC123 and the transcriptional
elongation complex P-TEFb124 are postulated to work in concert,
they explore the nuclear space with decidedly different modes:
MYC globally surveys the entire volume of the nucleus whereas
P-TEFb undergoes constrained diffusion.125 Similarly, CTCF and
Rad21, 2 integral and cooperating proteins controlling the topol-
ogy of the eukaryotic genome, also havemarkedly different search
dynamics: although a diffusing CTCF typically searches for and
binds to a cognate site within 1minute, Rad21 requires on average
33 minutes of diffusion before rebinding.126

One somewhat surprising finding from the studies listed here is
not just the differences in search strategies used by different

regulatory proteins, but also the instability of binding once a tar-
get has been identified. Indeed, CTCF was found to bind to its
cognate binding site for only 1 minute on average, whereas
Rad21 bound for 22 minutes.126 These data indicate that the sta-
ble looping structures assumed through -omics approaches are
actually maintained through a flux of protein. Even more remark-
ably, it appears that for many nuclear proteins, including
SOX2,127,128 the Mediator complex, RNA polymerase II129 and
BRD4,130 binding times are on the order of seconds, rather than
minutes, indicating that most regulatory complexes are transient
hubs maintained through dynamic binding and unbinding of fac-
tors to the genome. Although preliminary, our group has also
recently discovered similar properties in the hematopoietic TF
PU.1 and Gata1, with each having stable binding occurring in
only 5% of all nuclear TF molecules at a given time and with res-
idence times of only several seconds during each binding event.

Quantitative gene regulation
Another consideration that is exceedingly nontrivial in light of the
preceding section is determining how a TF actually regulates a tar-
get locus. In principle, mammalian TF are known to either activate
or repress target genes through the recruitment of enzymes to
chromatin. This recruitment then changes the local energy land-
scape through covalent modification of histones and/or DNA, ulti-
mately facilitating or hindering subsequent transcription131,132

(see the companion review for more on this topic). Although this
model is typically assumed, implicit in this description is the con-
sumption of energy, which means that the system out of thermo-
dynamic equilibrium. This has at least 2 important implications for
the leukemia field.

First, whereas the interaction of a TF and a target locus are typi-
cally viewed from the perspective of a static DNA substrate being
bound by protein (Figure 3Ci), the microscopic reality of this inter-
action is actually much more nuanced. Indeed, the inclusion of
epigenetic reactions actually means that the DNA-chromatin tem-
plate could either be in a number of energetically different config-
urations within the same “cell state,” with consequently different
binding activities by the TF that are stable properties for the locus
over the cell’s lifespan, or it may reflect changes in the locus over
time within the same cell (Figure 3Cii-iii).133,134 Although these
phenomena are clearly not mutually exclusively, in the restricted
case of simple temporal evolution, the binding affinities between
a TF and a target locus will necessarily change over time. Given
the probabilistic nature of binding and unbinding, as well as the
short time scales over which these interactions take place, it is
therefore evident that identical cells with similar TF concentrations
could demonstrate markedly different behaviors over time
through chance alone. Although this may seem to be a purely aca-
demic distinction, this directly affects the validity of the derived
gene regulatory function87,133 linking the concentration of a TF
to target gene expression. From a practical perspective, it indi-
cates that contemporaneous transcriptional activity of a gene
may be better correlated with the temporal integration of
TF-binding events, rather than the current TF-binding peaks.
This is likely to be particularly relevant for TF that are expressed
at low, but fluctuating, levels beginning in early stem cells such
as PU.1, Runx1, and Gata2. A second, related issue comes from
the observation that many TFs appear to undergo stochastic state
transitions between low and high expression states over the
course of many cell divisions during differentiation.90,91,93,135,136
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The number of these transitions, the time spent in each state, and
the half-lives of the covalent modifications made at the TF’s target
loci all have direct effect on the transcriptional network of the cell.

Taken together, these 2 effects of nonequilibrium dynamics
necessitate the study of transcriptional network evolution over
time, rather than through single snap shot analyses.134 At a tech-
nical level, this consideration ultimately requires that the root,
leukemia-initiating cell populations are defined and studied.
Recent advances in single-cell technologies, single-molecule
imaging, and clonal tracing will be critical tools in this
regard.90,93,137-141 Furthermore, advances in information the-
ory,142,143 noise-control theory,144-147 and multitalk evolution the-
ory148,149 will be of particular importance in making analytical
sense of these complex data sets. Ultimately, these tools, both
technical and analytical, should help formulate a more compre-
hensive, unified understanding of MDS and AML (and other can-
cers) and point the way toward novel therapeutic options.

Defining the leukemic state and
therapeutic resistance
The aforementioned studies significantly complicate our under-
standing of transcriptional networks, how they emerge, and how
TF regulate them. For one, transcriptional stochasticity leads to
probability distributions that are significantly dispersed and typi-
cally dominated by low molecular copy numbers on the order of
tens ofmRNAs and hundreds to a few thousand proteinmolecules
per cell. Second, even after gene expression reactions are com-
pleted, the behavior of these TF protein molecules is complex,
relying heavily on protein–protein interactions and dynamic post-
translational modifications, in addition to the canonical interactions
they make with the genome. Finally, all of these fluctuating sources
of regulatory information ultimately must be “read out” and cul-
minate in a stereotypical pattern of gene expression known as
the transcription network. Undoubtedly, determining how these

processes reliably transmit information to support robust tissue
homeostasis is one of themajor outstanding questions ofmolecular
and developmental biology. By extension, how this putatively noisy
flowof information can be further corrupted to generate a leukemic
state or leukemic network also remains to be fully defined.

One very possible scenario in light of this realization is that a
defined leukemic state may not be an appropriate view of disease
pathogenesis in AML and MDS. This viewpoint is built from the
large body of literature that has carefully collected and cataloged
the litany of disease-associatedmutational variants or deregulated
genes found within these tumors. From those mutations, the
assumption has been that a network must be operating to main-
tain fitness of leukemic clones. However, this model has not be
able to explain why somanymutations both within10,11 and across
leukemia patients37 lead to largely phenotypically similar condi-
tions. Indeed, a “unified” theory of leukemogenesis is still needed.

One alternative hypothesis is that leukemic cells or the leukemic
network may be better understood as a set of “trapped” cellular
states on the differentiation landscape normally supporting multi-
lineage, hematopoietic differentiation, akin to a molecular purga-
tory from which the clone cannot escape (Figure 4A). In such a
model, the leukemic state would effectively be a default state cells
“fall into” when $1 critical network components are deregulated
outside of their evolutionarily set operating window. Leukemoge-
nicity would, in this situation, not be defined by a unique onco-
genic program, but rather as the set of programs conducive to
continued cell survival despite failure to progress along a differen-
tiation trajectory. Importantly, the only requirement of such a
default state is that the state is viable; it could comprise an innu-
merable number of substates driven through stochasticity of
gene expression. Quite obviously, there will be a pressing need
to concurrently define the boundaries within which “normal”
hematopoietic network dynamics can operate to understand
where in transcriptional space leukemic networks reside.

Genetic progression Transcriptional state
plasticity

LIC

R+
R+

Primary
AML

Relapse
AML

Myelopoiesis

Leukemogenesis

HSC/MPP

A B

Erythropoiesis

Figure 4. The leukemic state and disease progression. (A) Topology of normal hematopoietic differentiation with the “leukemic state” as a trapped basin in gene expres-
sion space. (B) Two models of therapeutic resistance in AML. In the genetic scenario, acquisition of resistance mutations (denoted with R1) in a polyclonal malignancy cre-
ates a selective pressure that leads to AML relapse. In the transcriptional state plasticity scenario, cells can occupy a diversity of cellular microstates within the “leukemic
state” that make them more or less susceptible to clearance by chemotherapy. If these states are based on the expression of particular TF, then selected states could be
inherited in relapse tumors. Importantly, these mechanisms are likely not mutually exclusive and are intrinsically dependent on one another.
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Beyond disease initiation, this view of leukemia gene expression
states may also have an important role in therapy resistance.
Indeed, network plasticity derived from nongenetic heterogeneity
has been demonstrated in other tumors to generate population
fitness. In both neuroblastoma150 andmelanoma,138,151 stochastic
transitions in the tumor’s gene expression network facilitate the
escape of a subpopulation of tumor cells when challenged with
chemotherapy. Foundational studies in metastases also have
shown that heterogeneity within the primary tumor is central to
the metastatic capacity of the tumor.152 Determining whether
such mechanisms, as opposed to purely genetic mechanisms,
are operating during leukemia relapse will be a critical step in
the coming years (Figure 4B).

Summary/conclusion
In conclusion, recent studies at the level of singlemolecules and in
single cells have shed new insight into the complexities of gene
expression. In light of those studies, we believe that it will be par-
ticularly important to consider the molecular, spatial, and tempo-
ral resolution needed to study gene expression changes during
leukemogenesis, particularly when the time scales (eg, binding
times of TF, bursting frequencies) and the molecular thresholds
(eg, the number of TF molecules needed to influence a network)
operating in these systems remain poorly defined. We believe the
technologies listed here will be critical in this regard, particularly
when the results of those studies are used in parallel to the ex-
citing advances coming from whole genome level, including
single-cell RNA-sequencing,137,140,153-156 assay for transposase-
accessible chromation sequencing,157,158 chromatin capture tech-
niques,52 and chromatin immunoprecipitation seqencing.73,159

Moreover, they can be used to test the predictions made via ele-
gant network analyses of hematopoiesis and leukemia.160-163 For
one, tools such as single-molecule FISH will be vitally important
toward understanding both the magnitude and source of gene
expression stochasticity in primary hematopoietic cells. Live cell
studies of transcription could also be a useful tool for investigating
how different epigenetic aberrations seen in AML lead to changes
in transcriptional kinetics. Single-protein imaging experiments in
live cells could provide critical measurements of actual search
times and binding times of nuclear proteins such as TF, transcrip-
tional machinery, and cohesin complex components, which will
help shape our understanding of chromatin dynamics, how com-
binatorial control of loci plays out in live cells, and how these
dynamics are altered in leukemia. As with all technical approaches,
it will be important to consider the biological and physical
plausibility of models derived from these studies a pri-
ori,133,146,147,164,165 particularly in light of the wide range of
single-cell behaviors that are evidently tolerated during normal
hematopoiesis. Finally, it is also clearly evident that any of these
tools (either alone or in combination) should also play a pivotal
role in the next generation of high-throughput screening tech-
nologies in the search for novel therapeutics or therapeutic

strategies. Indeed, the combination of high-resolution, single-
cell technologies with systems analyses has recently yielded fun-
damental insights into how pharmacology can affect dynamic sig-
naling processes in the cell.119 It behooves the leukemia
community to begin applying similar experimental approaches
in the quest for novel antileukemic agents. A particularly alluring
prospect would be to use these tools to revisit previously devel-
oped compounds that, although not necessarily efficacious as sin-
gle agents, limit the gene expression state space leukemia cells
can occupy and possibly increase the potency of current standard
of care regimes.

In summary, the advent of single-molecule gene expression stud-
ies has been a watershed moment for our understanding of life
inside the cell. Those studies have demonstrated that stochasticity
imparts an enormous influence on the process of gene expression.
It therefore follows that defining “gene deregulation” may be
much more a complicated process than initially anticipated. Nev-
ertheless, by integrating these tools in parallel to the critical
whole-genome approaches being used in the field, it is the opin-
ion of these authors that there will be significant progress in our
understanding of leukemia pathogenesis in the coming years.
This progress should hopefully open new therapeutic avenues
into the treatment of these recalcitrant malignancies.
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