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Acute megakaryoblastic leukemia (AMKL) is a heterogeneous disease with a relatively poorly understood
pathogenesis. In this issue of Cancer Cell, Thirant and colleagues systematically examine unique transcrip-
tional and functional effects of ETO2-GLIS2, an oncogenic fusion protein frequently encountered in AMKL,
and elucidate a therapeutic vulnerability in this poor-prognosis leukemia.
Acute myeloid leukemias (AMLs) are a

heterogeneous group of hematopoietic

malignancies with complex phenotypes.

While all acute leukemias are defined by

a differentiation block and the prolifera-

tion of immature blast cells, the exact

clinical entity encountered can depend

on both the cell of origin and the specific

molecular aberrations. Acute megakaryo-

blastic leukemia (AMKL) is a subtype of

AML arising in the megakaryocytic line-

age. AMKL is predominantly a pediatric

disorder and has two major subgroups:

AMKL arising in Down syndrome patients

(DS-AMKL) and AMKL arising de novo

(non-DS-AMKL). While both subgroups

of AMKL have overlapping cytochemical

and immunophenotypic characteristics,

the prognosis and genetic alterations

are substantially different. DS-AMKL is a

relatively well-characterized AML that
arises early in life in DS patients, uni-

formly involves mutations in the gene

encoding the erythroid/megakaryocyte

transcription factor GATA1, and has a

good prognosis (Athale et al., 2001).

Conversely, non-DS AMKL is a geneti-

cally varied disease harboring a spec-

trum of mutations and chromosomal

rearrangements and has a very poor

prognosis. How these genetic lesions

contribute to such an aggressive AMKL

pathogenesis is a central question in

the field.

Recent genetic studies of non-DS-

AMKL have identified a number of recur-

rent chromosomal translocations, gene

fusions, and mutations involving genes

encoding critical transcriptional regula-

tors (Gruber et al., 2012; Thiollier et al.,

2012). The most frequently identified

genetic event in non-DS-AMKL is a
cryptic inversion on chromosome 16

[inv(16)(p13.3q24.3)] that produces a

novel gene fusion product between the

corepressor ETO2 and GLI-family tran-

scription factor GLIS2. This fusion is

found in 20%–30% of non-DS-AMKL

cases, which carry a very poor prognosis

and have a distinct transcriptional profile

from those not harboring the inversion

(Gruber et al., 2012; Gruber and Downing,

2015). While ETO2 has a well-docu-

mented role in transcription regulation

in hematopoietic stem cells and in mega-

karyopoiesis (Doré and Crispino, 2011),

the role of GLIS2, a component of the

Hedgehog signaling pathway, in hemato-

poiesis has yet to be fully elucidated.

Moreover, no study to date has identi-

fied how fusion of these factors leads

to aberrant transcriptional programs in

megakaryocytic progenitors.
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In a series of elegant experiments, Thir-

ant and colleagues clearly demonstrate a

novel transcriptional program and unique

functional properties induced by ETO2-

GLIS2 (Thirant et al., 2017). First, the au-

thors illustrated that while expression of

GLIS2 or ETO2-GLIS2 induced megakar-

yocytic differentiation in primary hemato-

poietic progenitor cells, ETO2-GLIS2

resulted in an additional phenotype of

significant self-renewal capacity. Further-

more, this phenotype required intact DNA

binding by the GLIS2 moiety and tran-

scription factor complex recruitment via

an NHR2 domain of ETO2. Next, the

authors showed that ETO2-GLIS2 in-

duces a transcriptional program that is

distinct from those induced by GLIS2 or

ETO2 overexpression alone. This deregu-

lated network included aberrant expres-

sion of several key transcription factors.

Of particular interest were significant

changes in the expression and transcrip-

tional activity of two transcription factors,

Gata1 and Erg, which are known to be

critically important in megakaryopoiesis.

Specifically, expression of ETO2-GLIS2

led to marked downregulation and

depressed activity of Gata1, while the

levels of Erg and its target genes

increased. This Gata1/Erg imbalance

was further validated in primary samples

from patients with AMKL harboring the

ETO2-GLIS2 fusion, indicating that this

may be an important transcriptional event

in disease pathogenesis.

To develop a better understanding of

how ETO2-GLIS2 initiated these aberrant

AMKL transcriptional networks, whole-

genome occupancy of the endogenous

fusion protein was queried with chromatin

immunoprecipitation and sequencing

(ChIP-seq). In these experiments, the

authors made several important observa-

tions: (1) that ETO2-GLIS2 bound in two

classes of sites, those bound by ETO2

normally (shared sites) and a larger set

of novel binding sites not known to be

bound by ETO2 in megakaryocytes; (2)

that motifs for factors known to complex

with ETO2, including those for RUNX1,

ERG, and GATA1, were found in shared

sites; (3) that motifs for GLIS2 and

members of the ZIC family of zinc finger
308 Cancer Cell 31, March 13, 2017
transcription factors were highly enriched

at all ETO2-GLIS2 binding sites; and

(4) that ERG bound to approximately half

of all ETO2-GLIS2 sites. Importantly,

this aberrant binding pattern appeared

to have unique transcriptional conse-

quences: while �20% of genes bound

by ETO2-GLIS2 were deregulated, only

half of these transcription changes could

be explained by overexpression of

GLIS2 alone or ETO2 alone, or by co-

expression of both factors, indicating

that the fusion protein had a unique tran-

scriptional behavior from either of its

component moieties. Moreover, genes

residing near de novo ETO2-GLIS2 bind-

ing sites tended to be upregulated, while

genes near shared binding sites between

ETO2 and ETO2-GLIS2 showed a trend

toward downregulation. Thirant and

colleagues went on to show that de

novo binding sites tended to occur in

super-enhancers and to be co-occupied

by ERG, while shared sites were enriched

at proximal promoters.

These results suggested that the

abnormal transcription network induced

by ETO2-GLIS2 possibly resulted from

aberrant ERG and ETO2 activity. Consis-

tent with this hypothesis, CRISPR-Cas9-

mediated inactivation of ERG blocked

the ability of ETO2-GLIS2 to induce

expression of target genes such as KIT,

blocked in vitro proliferation of ETO2-

GLIS2-expressing AMKL cells, and led

to reduced in vivo proliferation of xeno-

grafted cells from AMKL patients. Simi-

larly, by ectopically expressing the NHR2

domain-containing peptide NC128, which

blocks oligomerization and thus function

of ETO factors, Thirant and colleagues

found substantial reductions in the prolif-

erative capacity of AMKL cells, increased

megakaryocytic differentiation, and a

reversal of the aberrant GATA1/ERG ratio

induced by ETO2-GLIS2. Most strikingly,

expression of NC128 completely rescued

the survival of mice xenografted with

ETO2-GLIS2-expressing AMKL cells.

This study by Thirant et al. represents

an important milestone in the understand-

ing of AMKL pathogenesis. Through a se-

ries of well-controlled assays and whole-

genome approaches, they systemically
identified a neomorphic transcriptional

network induced by ETO2-GLIS2. They

further characterized how this fusion me-

diates a block in terminal megakaryo-

poietic differentiation and an increase in

self-renewal through inhibition of normal

ETO2 function, through aberrant activa-

tion of super-enhancer-related genes,

and by generating an imbalance in critical

megakaryocyte transcription factors such

as GATA1 and ERG. While the molecular

details involved in this aberrant trans-

criptional network—including the exact

composition of these novel transcriptional

complexes, how the presence of the

fusion protein alters the kinetics and dy-

namics of component binding, and how

these complexes manipulate polymerase

activity at target genes—still need to be

explored in future studies, this work rep-

resents an important step at identifying

critical transcriptional pathways involved

in non-DS-AMKL pathogenesis. Most

importantly, however, this work illustrates

that the observed transcriptional effects

may indeed be ‘‘druggable,’’ by blocking

critical interaction domains and associa-

tion of the oncogenic fusion protein with

other ETO family members, and may

thus provide the basis for the develop-

ment of novel approaches to pharmaco-

logically target this AML subtype with

particularly poor prognosis.
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